
Toward CWE Compatibility Effectiveness

Paul E. Black

paul.black@nist.gov

Java,

Ada,

C++,

…

binary

programs

Weaknesses &

Vulnerabilities

Reports

Static

Analyzer

What is Static Analysis?

 Examine design, source code, or binary for

weaknesses, adherence to guidelines, etc.

Static

Analyzer

Does this Static Analyzer Work?

 In particular, does it find the weaknesses (Common

Weakness Enumeration - CWE) that it claims (Coverage

Claims Representation - CCR) to find?

MITRE’s CWE Compatibility and

Effectiveness Program

 Phase 1 – Declare compatibility

 Phase 2 – Verify mapping to CWEs

 Phase 3 – Test cases show effectiveness

– tool/service effectively locates CWEs

– tool/service deals with code complexities

 http://cwe.mitre.org/compatible/program.html

 We propose (1) what acceptable test

cases are, and (2) that the SAMATE

Reference Dataset (SRD) be the test case

repository

4

5

 Sound analysis is not

perfect anyway.

 No test set can show

all possible bugs,

heuristics, variants,

and corner cases.

 How thorough should

the test set be?

“Snake oil”

The Problem

Measurement is Multidimensional

6

What are the Questions?

1. Who should decide the criteria?

– NIST,

– MITRE, and

– tool users

2. What should the content be like?

3. Can sets be cheat-proofed?

4. Who creates the test cases? How?

5. What about versions?

7

What should the content be like?

 Each CWE has one or more tests

– short (this is not about handling megacode)

– code is vulnerable, i.e., exploitable

– (usually) synthetic

– fairly “clean”, but not necessarily pristine;

meet SRD “accepted” standard

– standard code; no language extensions

 Test cases have corresponding “fixed”

test cases, to measure false positives

8

What is a Code Complexity?
 char data;

 data = 'C’;

 data = 'Z’;

 printHexChar(data);

9

 char data;

 if (1) {

 data = 'C’;

 } else {

 data = 'C’;

 printHexChar(data);

 }

 if (1) {

 data = 'Z’;

 printHexChar(data);

 } else {

 printHexChar(data);

 }

after Juliet test set CWE563_Unused_Variable__unused_value_char_01.c and …_02.c

What about code complexities?

 Code complexities are complications that

do not affect the CWE.

 The fundamental set for each CWE has
minimal complexities, perhaps none.

Proposal:

 A broad test set to explore complexities.

– maybe several, but not one for each CWE

10

Juliet Test Suite

11

 59,493 small C/C++ and Java programs

 covering 128 CWEs

 in dozens of subtle variations

 within dozens of code complexities.

Can sets be cheat-proofed?

 A public, static set is susceptible to

cheating. (A secret set has other problems.)

 Maybe change comments and identifier

names for every download?

 Maybe add innocuous statements?

 Maybe transform code, like unroll loops?

Proposal:

 If concerns, privately corroborate results.

12

Who creates the test cases?

 Test cases may come from anywhere.

 Some cases chosen from SRD, especially

Juliet test set.

 MITRE is working on a case generator.

 Contributions welcome from researchers.

13

What about versions?

 Test sets may have programs added,

removed, or replaced as knowledge of

measuring CWE effectiveness improves.

 Posted results include version of test sets

and version of tool.

 Participants may retake the effectiveness

tests and post additional results for new

versions of tool or tests.

14

Where should we begin?

 3 or 4 fundamental test cases for covered

CWEs (and corresponding “fixed” cases).

 A set of test cases for code complexities

in one or two most common CWEs, e.g.,

Stack-based Buffer Overflow (CWE-121) or

OS Injection (CWE-78).

15

Phase 3 – Effectiveness Phase

 The major aspect of the CWE Effectiveness phase is:
– focused on providing your prospective customers with an understanding of

which specific CWE identifiers your capability reviews artifacts for;
• e.g. though Claims Coverage Representation (CCR)

– to provide a public collection of test results that will allow a prospective

customer to understand which CWE identifiers your capability is effective in

locating; and,

– to articulate what types of complexity in software your capability is most

successful at dealing with when looking for CWE identifier labeled

weaknesses.

 The posting of the test results on the CWE Web site will

conclude the CWE Effectiveness Phase and an appropriate

CWE-Effective logo and brand will be made available for your

use.

16

Questions or suggestions?

Paul E. Black paul.black@nist.gov

17

